
Toward CWE Compatibility Effectiveness

Paul E. Black

paul.black@nist.gov

Java,

Ada,

C++,

…

binary

programs

Weaknesses &

Vulnerabilities

Reports

Static

Analyzer

What is Static Analysis?

 Examine design, source code, or binary for

weaknesses, adherence to guidelines, etc.

Static

Analyzer

Does this Static Analyzer Work?

 In particular, does it find the weaknesses (Common

Weakness Enumeration - CWE) that it claims (Coverage

Claims Representation - CCR) to find?

MITRE’s CWE Compatibility and

Effectiveness Program

 Phase 1 – Declare compatibility

 Phase 2 – Verify mapping to CWEs

 Phase 3 – Test cases show effectiveness

– tool/service effectively locates CWEs

– tool/service deals with code complexities

 http://cwe.mitre.org/compatible/program.html

 We propose (1) what acceptable test

cases are, and (2) that the SAMATE

Reference Dataset (SRD) be the test case

repository

4

5

 Sound analysis is not

perfect anyway.

 No test set can show

all possible bugs,

heuristics, variants,

and corner cases.

 How thorough should

the test set be?

“Snake oil”

The Problem

Measurement is Multidimensional

6

What are the Questions?

1. Who should decide the criteria?

– NIST,

– MITRE, and

– tool users

2. What should the content be like?

3. Can sets be cheat-proofed?

4. Who creates the test cases? How?

5. What about versions?

7

What should the content be like?

 Each CWE has one or more tests

– short (this is not about handling megacode)

– code is vulnerable, i.e., exploitable

– (usually) synthetic

– fairly “clean”, but not necessarily pristine;

meet SRD “accepted” standard

– standard code; no language extensions

 Test cases have corresponding “fixed”

test cases, to measure false positives

8

What is a Code Complexity?
 char data;

 data = 'C’;

 data = 'Z’;

 printHexChar(data);

9

 char data;

 if (1) {

 data = 'C’;

 } else {

 data = 'C’;

 printHexChar(data);

 }

 if (1) {

 data = 'Z’;

 printHexChar(data);

 } else {

 printHexChar(data);

 }

after Juliet test set CWE563_Unused_Variable__unused_value_char_01.c and …_02.c

What about code complexities?

 Code complexities are complications that

do not affect the CWE.

 The fundamental set for each CWE has
minimal complexities, perhaps none.

Proposal:

 A broad test set to explore complexities.

– maybe several, but not one for each CWE

10

Juliet Test Suite

11

 59,493 small C/C++ and Java programs

 covering 128 CWEs

 in dozens of subtle variations

 within dozens of code complexities.

Can sets be cheat-proofed?

 A public, static set is susceptible to

cheating. (A secret set has other problems.)

 Maybe change comments and identifier

names for every download?

 Maybe add innocuous statements?

 Maybe transform code, like unroll loops?

Proposal:

 If concerns, privately corroborate results.

12

Who creates the test cases?

 Test cases may come from anywhere.

 Some cases chosen from SRD, especially

Juliet test set.

 MITRE is working on a case generator.

 Contributions welcome from researchers.

13

What about versions?

 Test sets may have programs added,

removed, or replaced as knowledge of

measuring CWE effectiveness improves.

 Posted results include version of test sets

and version of tool.

 Participants may retake the effectiveness

tests and post additional results for new

versions of tool or tests.

14

Where should we begin?

 3 or 4 fundamental test cases for covered

CWEs (and corresponding “fixed” cases).

 A set of test cases for code complexities

in one or two most common CWEs, e.g.,

Stack-based Buffer Overflow (CWE-121) or

OS Injection (CWE-78).

15

Phase 3 – Effectiveness Phase

 The major aspect of the CWE Effectiveness phase is:
– focused on providing your prospective customers with an understanding of

which specific CWE identifiers your capability reviews artifacts for;
• e.g. though Claims Coverage Representation (CCR)

– to provide a public collection of test results that will allow a prospective

customer to understand which CWE identifiers your capability is effective in

locating; and,

– to articulate what types of complexity in software your capability is most

successful at dealing with when looking for CWE identifier labeled

weaknesses.

 The posting of the test results on the CWE Web site will

conclude the CWE Effectiveness Phase and an appropriate

CWE-Effective logo and brand will be made available for your

use.

16

Questions or suggestions?

Paul E. Black paul.black@nist.gov

17

